Scientists just simulated the “impossible” — fault-tolerant quantum code cracked at last

0
4

Quantum computers can perform complex computations thanks to their ability to represent an enormous number of different states at the same time in a so-called quantum superposition. Representing these superpositions of states is incredibly difficult to describe. Now, a research team has found a relatively simple method to simulate some relevant quantum superpositions of states. The illustration shows one of these superpositions, which can be created inside what’s known as a continuous-variable quantum computer. The team was able to observe how these states change when they interact with each other, and they were also able to simulate those changes using wave-like patterns – like the ones you see in the image. Credit: Chalmers University of Technology I Cameron Calcluth

Quantum computers still face a major hurdle on their pathway to practical use cases: their limited ability to correct the arising computational errors. To develop truly reliable quantum computers, researchers must be able to simulate quantum computations using conventional computers to verify their correctness – a vital yet extraordinarily difficult task. Now, in a world-first, researchers from Chalmers University of Technology in Sweden, the University of Milan, the University of Granada, and the University of Tokyo have unveiled a method for simulating specific types of error-corrected quantum computations – a significant leap forward in the quest for robust quantum technologies.

Quantum computers have the potential to solve complex problems that no supercomputer today can handle. In the foreseeable future, quantum technology’s computing power is expected to revolutionise fundamental ways of solving problems in medicine, energy, encryption, AI, and logistics.

Quantum computers still face a major hurdle on their pathway to practical use cases: their limited ability to correct the arising computational errors. To develop truly reliable quantum computers, researchers must be able to simulate quantum computations using conventional computers to verify their correctness – a vital yet extraordinarily difficult task. Now, in a world-first, researchers from Chalmers University of Technology in Sweden, the University of Milan, the University of Granada, and the University of Tokyo have unveiled a method for simulating specific types of error-corrected quantum computations – a significant leap forward in the quest for robust quantum technologies.

o verify the accuracy of a quantum computation, researchers simulate – or mimic – the calculations using conventional computers. One particularly important type of quantum computation that researchers are therefore interested in simulating is one that can withstand disturbances and effectively correct errors. However, the immense complexity of quantum computations makes such simulations extremely demanding – so much so that, in some cases, even the world’s best conventional supercomputer would take the age of the universe to reproduce the result.

Researchers from Chalmers University of Technology, the University of Milan, the University of Granada and the University of Tokyo have now become the first in the world to present a method for accurately simulating a certain type of quantum computation that is particularly suitable for error correction, but which thus far has been very difficult to simulate. The breakthrough tackles a long-standing challenge in quantum research.

“We have discovered a way to simulate a specific type of quantum computation where previous methods have not been effective. This means that we can now simulate quantum computations with an error correction code used for fault tolerance, which is crucial for being able to build better and more robust quantum computers in the future,” says Cameron Calcluth, PhD in Applied Quantum Physics at Chalmers and first author of a study recently published in Physical Review Letters.

Error-correcting quantum computations – demanding yet crucial

The limited ability of quantum computers to correct errors stems from their fundamental building blocks – qubits – which have the potential for immense computational power but are also highly sensitive. The computational power of quantum computers relies on the quantum mechanical phenomenon of superposition, meaning qubits can simultaneously hold the values 1 and 0, as well as all intermediate states, in any combination. The computational capacity increases exponentially with each additional qubit, but the trade-off is their extreme susceptibility to disturbances.